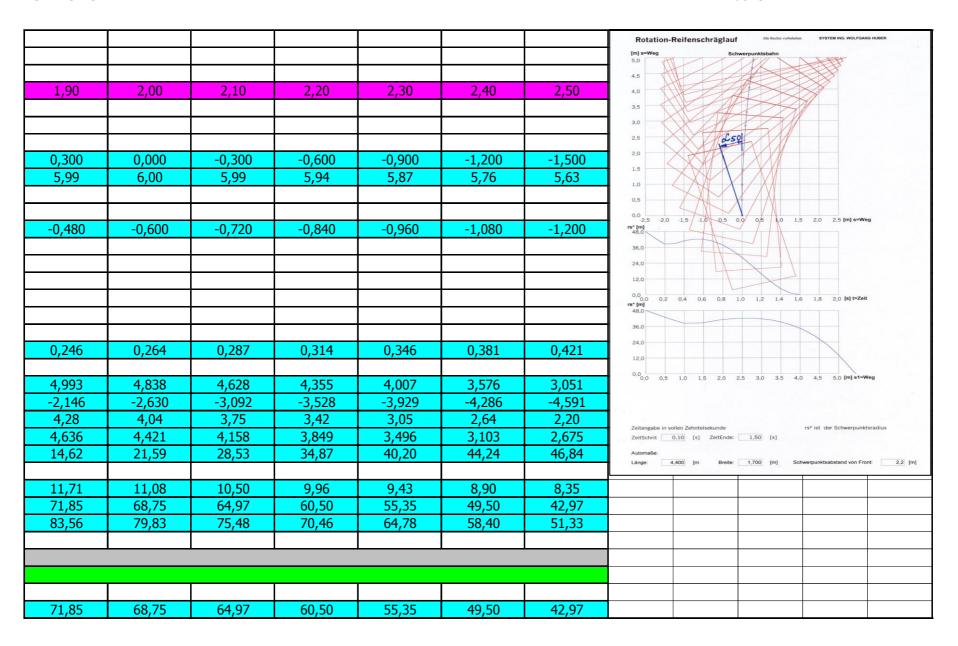

P14 -	Wert -	Rechen -	$1 m/s = ^3.6 km/h$	Berechnung mit \	/orbehalt! - nur be	edingt verwendba	r - nur grobes Abs	schätzen - Sperrfu
Simulation	Eingabe	Ergebnis	System Ing. W. Huber	Negativwerte s	sind Unsinn - fai	lls omega > 0,0	00 bei V = 0,00	> Unsinn. Gru
© Copyright. Alle Rechte vorbehalten.		keine Eingabe! Stand: 01.09.2005		Berechnung	vorerst nur	Schräglaufwinkel gesam		
t = Zeit [0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70
Zeitintervall delta t	o,10	Fahrzeug	Mitsubishi Pajero					
a-Verzögerung, -Wert [m/s	2]							
a-Beschleunigung, +Wert [m/s	²] -3,00	< Eingabe als	+ oder - Wert					
V-Geschwindigkeit [m/s] <mark>6,000</mark>	5,700	5,400	5,100	4,800	4,500	4,200	3,900
s-Wegstrecke-kumuliert [m] 0,00	0,59	1,14	1,67	2,16	2,63	3,06	3,47
alpha-Rotations-Verzögerung, -Wert [1/s²]								
alpha-Rotations-Beschleunigung, +Wert [1/s²]	-1,200	< Eingabe als	+ oder - Wert					
omega-Rotationsgeschwindigkeit [1/s	1,800	1,680	1,560	1,440	1,320	1,200	1,080	0,960
μs-KraftschlussbeiwertReif/Fahrbahn	0,600							
alphas0-Schräglaufwinkel bei Beginn [°	-15,00	< Eingabe +: a	lphas [°] wird >;	< Eingabe	e -: alphas [°] wird <		
a1-Verzögerung längs Kfz [m/s²]							
a1 (=atlmBremsmax=µs.g{g=9,81m/s²})	6,00							
Faktor x*	0,1000							
an(quer)max = x*.a1	0,600							
anTatsächlich (an*) [m/s²	0,518	0,546	0,598	0,555	0,508	0,463	0,421	0,381
atTatsächlich/möglich/max [m/s²	6,00							
at*-Verzög aus ReifenSchräglauf [m/s²]	1,523	1,023	0,040	0,875	1,701	2,427	3,051	3,576
v*-Geschwindigkeit aus at* [m/s	5,000	4,898	4,894	4,806	4,636	4,393	4,088	3,731
s*-Weg aus at* und v* - kumuliert [m	0,000	0,49	0,98	1,47	1,94	2,39	2,82	3,21
s1-Weg:v*.delta t in jeder Zeitetappe-kum[m]	0,000	0,500	0,990	1,479	1,960	2,423	2,863	3,272
rs*-Schwerpunkts-Radius [m]	48,24	44,82	40,08	42,42	43,89	44,02	42,76	40,08
Bogenrichtung (rs*-Kurve) + oder -	1,00	< Eingabe +1 : rs* in	Rotationssinn	< Eingabe -1 :	rs* entgegen Rot			
phiKurve [0,00	0,63	1,33	1,99	2,60	3,19	3,76	4,32
phiDrall = Rotationswinkel ['	0,00	9,97	19,25	27,85	35,75	42,97	49,50	55,35
phiKurve+Drall (= phigesamt) [0,00	10,60	20,58	29,83	38,36	46,16	53,26	59,67
Sinus (des Winkels [°] - Eingabe)	30,00	0,50000	Cosinus (des Winkel	s [°]-Eingabe)	30,00	0,86603		
Testversion, alphas0 = -15°, phil	rall nicht	als Mittelwert ein	gesetzt, at* von pl	ni<> phi>	, at*-Wert is	st eingetrage	n beim phi>	-Wert.
alphas0-Schräglaufwinkel bei Beginn [°	-15,00	< Eingabe +: a	lphas [°] wird >;	< Eingabe	e -: alphas [°] wird <		
phiDrall = Rotationswinkel [0,00	9,97	19,25	27,85	35,75	42,97	49,50	55,35


	ı	T		1		1	1	1
at*-Verzög aus ReifenSchräglauf [m/s²]								
System Prof. Seidel	1,523	1,023	0,516	0,436	1,308	2,085	2,760	3,333
at*-Verzög aus ReifenSchräglauf [m/s²]								
System eigen - in meinem Programm Vera	1,523	1,023	0,516	0,436	1,308	2,085	2,760	3,333
v*-Geschwindigkeit aus at*-Seidel [m/s]	5,000	4,848	4,745	4,694	4,650	4,519	4,311	4,035
s*-Weg aus at*u.v*-kumuliert-Prof. Seidel [m]	0,00	0,49	0,97	1,44	1,91	2,37	2,81	3,23
rs*-Schwerpunkts-Radius-Prof. Seidel [m]	48,24	43,01	39,26	38,13	40,76	42,14	42,15	40,70
anTatsächlich (an*) - Prof. Seidel [m/s²]	0,518	0,546	0,574	0,578	0,531	0,485	0,441	0,400
phiKurve - Prof. Seidel [°]	0,00	0,58	1,28	1,99	2,65	3,27	3,87	4,46
phiKurve+Drall (= phigesamt) - Seidel [°]	0,00	10,55	20,54	29,84	38,40	46,25	53,38	59,81
s1-Weg: v*.delta t - in jeder Zeitetappe - [m]								
System Prof. Seidel - s1-Wert jeweils in								
nächster Zeitzeile (kumuliert)	0,000	0,500	0,985	1,459	1,929	2,394	2,846	3,277
s1-Weg Bogen rs*m aus at*u.v*-kumuliert [m]								
s*-Weg aus at*u.v*-kumuliert-Prof. Seidel [m]								
/=System eigen; Berechnung mit Vmittel	0,00							
Erweiterung mit Berechnung und I Delta s_x und s_x -kumuliert wird in V								
Der dargestellte Schwerpunktbew	egungsw	eg entspricht som	it nicht dem tatsä	chlichen erre	chneten Rad	ius. Die x-Ac	hse ist in kei	nem Maßsta
delta s _x mit rs* und delta phi Kurve [m]	0,000	0,003	0,008	0,014	0,019	0,023	0,026	0,028
s _x kumul als Koordinaten d. Schwerpunktes [m]	0,000	0,003	0,011	0,025	0,044	0,067	0,093	0,120
delta s _v mit rs* und delta phi Kurve [m]	0,000	0,495	0,489	0,485	0,472	0,451	0,423	0,390
s _v kumul als Koordinaten d. Schwerpunktes [m]	0,000	0,495	0,984	1,469	1,941	2,392	2,815	3,205
Das Diagramm wird automatisch mit den entspre								
	chenden We	rten aus der obigen Tabe	lle erstellt. Falls der sxW	ert auf der linken y	-Skala anders ist	als auf der rechte	n y-Skala des Diag	<u> </u>
ist die y-Skala zu korrigieren. Es ist auf der linker		-		·			n y-Skala des Diag	<u> </u>
	n oder rechte	n y-Skala ein Zahlenwert	mit Doppelklick anzuklic	ken. Es öffnet das f	enster: "Achsen f	formatieren".		gramms
Dort unter "Skalierung" anklicken. Bei Höchstwer	n oder rechte t den aufger	n y-Skala ein Zahlenwert undeten größten Wert au	mit Doppelklick anzuklic s der Zeile sx eingeben.	ken. Es öffnet das F Wenn 0,0 der y-Ach	enster: "Achsen f nse links mit der y	formatieren". /-Achse rechts nic	ht auf der gleiche	gramms n Linie
ist die y-Skala zu korrigieren. Es ist auf der linker Dort unter "Skalierung" anklicken. Bei Höchstwer liegt ist folgendes zu tun: Es ist auf der linken oc Dort unter "Höchstwert" und unter "Kleinstwert"	n oder rechte t den aufger ler rechten y	en y-Skala ein Zahlenwert undeten größten Wert au -Skala ein Zahlenwert mit	mit Doppelklick anzuklic s der Zeile sx eingeben. Doppelklick anzuklicken	ken. Es öffnet das F Wenn 0,0 der y-Ach . Es öffnet das Fens	Fenster: "Achsen f nse links mit der y ster: "Achsen form	formatieren". /-Achse rechts nic	ht auf der gleiche	gramms n Linie
Dort unter "Skalierung" anklicken. Bei Höchstwer liegt ist folgendes zu tun: Es ist auf der linken oc Dort unter "Höchstwert" und unter "Kleinstwert"	n oder rechte t den aufger ler rechten y- die geändert	en y-Skala ein Zahlenwert undeten größten Wert au -Skala ein Zahlenwert mit en Werte eingeben. Gleic	mit Doppelklick anzuklic s der Zeile sx eingeben. Doppelklick anzuklicken he Werte für y-Achse lin	ken. Es öffnet das F Wenn 0,0 der y-Ach . Es öffnet das Fens ks und y-Achse recl	Fenster: "Achsen f nse links mit der y ster: "Achsen form nts eingeben.	formatieren". r-Achse rechts nic natieren". Dort un	ht auf der gleiche	gramms n Linie
Dort unter "Skalierung" anklicken. Bei Höchstwer liegt ist folgendes zu tun: Es ist auf der linken oc	n oder rechte t den aufger ler rechten y- die geändert	en y-Skala ein Zahlenwert undeten größten Wert au -Skala ein Zahlenwert mit en Werte eingeben. Gleic	mit Doppelklick anzuklic s der Zeile sx eingeben. Doppelklick anzuklicken he Werte für y-Achse lin	ken. Es öffnet das F Wenn 0,0 der y-Ach . Es öffnet das Fens ks und y-Achse recl	Fenster: "Achsen f nse links mit der y ster: "Achsen form nts eingeben.	formatieren". r-Achse rechts nic natieren". Dort un	ht auf der gleiche	gramms n Linie
Dort unter "Skalierung" anklicken. Bei Höchstwer liegt ist folgendes zu tun: Es ist auf der linken oc Dort unter "Höchstwert" und unter "Kleinstwert"	n oder rechte t den aufger ler rechten y- die geändert	en y-Skala ein Zahlenwert undeten größten Wert au -Skala ein Zahlenwert mit en Werte eingeben. Gleic	mit Doppelklick anzuklic s der Zeile sx eingeben. Doppelklick anzuklicken he Werte für y-Achse lin	ken. Es öffnet das F Wenn 0,0 der y-Ach . Es öffnet das Fens ks und y-Achse recl	Fenster: "Achsen f nse links mit der y ster: "Achsen form nts eingeben.	formatieren". r-Achse rechts nic natieren". Dort un	ht auf der gleiche	gramms n Linie

	t programmiert - Drehsinn positiv -	Drehsinn im Uhrze	eiaersinn: und um	aekehrt.						
t von 180° m				9						
0,80	0,90	1,00	1,10	1,20	1,30	1,40	1,50	1,60	1,70	1,80
-,	-,		_/		_/	_,				
3,600	3,300	3,000	2,700	2,400	2,100	1,800	1,500	1,200	0,900	0,600
3,84	4,19	4,50	4,79	5,04	5,27	5,46	5,63	5,76	5,87	5,94
			-	-	•	•				
0,840	0,720	0,600	0,480	0,360	0,240	0,120	0,000	-0,120	-0,240	-0,360
0.246	0.214	0.207	0.264	0.246	0.222	0.222	0.210	0.210	0.222	0.222
0,346	0,314	0,287	0,264	0,246	0,232	0,223	0,219	0,219	0,223	0,232
4,007	4,355	4,628	4,838	4,993	5,102	5,170	5,204	5,204	5,170	5,102
3,330	2,895	2,432	1,948	1,449	0,939	0,421	-0,099	-0,619	-1,136	-1,646
3,56	3,87	4,14	4,36	4,53	4,65	4,71	4,73	4,70	4,61	4,47
3,645	3,978	4,267	4,510	4,705	4,850	4,944	4,986	4,976	4,914	4,800
36,04	30,83	24,72	18,16	11,73	6,14	2,07	0,12	0,59	3,45	8,34
		,	,	,	,	,	,		,	
4,88	5,46	6,08	6,77	7,60	8,71	10,59	18,36	14,87	13,41	12,46
60,50	64,97	68,75	71,85	74,26	75,97	77,01	77,35	77,01	75,97	74,26
65,38	70,43	74,83	78,62	81,85	84,68	87,60	95,70	91,87	89,39	86,71
								•		
60,50	64,97	68,75	71,85	74,26	75,97	77,01	77,35	77,01	75,97	74,26

3,809	4,197	4,506	4,745	4,926	5,057	5,145	5,196	5,212	5,196	5,145
3,809	4,197	4,506	4,745	4,926	5,057	5,145	5,196	5,212	5,196	5,145
3,702	3,321	2,901	2,450	1,976	1,483	0,977	0,463	-0,057	-0,578	-1,097
3,62	3,97	4,28	4,55	4,77	4,94	5,06	5,13	5,15	5,12	5,04
37,79	33,53	28,10	21,88	15,38	9,25	4,22	0,98	0,01	1,52	5,32
0,363	0,329	0,299	0,274	0,254	0,238	0,226	0,220	0,217	0,220	0,226
5,05	5,65	6,28	6,98	7,81	8,88	10,55	14,78	93,93	92,74	91,83
65,55	70,62	75,04	78,83	82,06	84,85	87,56	92,13	170,94	168,71	166,09
3,680	4,050	4,382	4,673	4,918	5,115	5,263	5,361	5,408	5,402	5,344
3,000	4,050	4,362	4,073	4,910	5,115	5,203	5,301	5,400	5, 4 02	5,3 44
eile 24), rs*-	Schwerpunk	ts-Radius (Z	eile 25) und	phiKurve (Ze	ile 27). Ange	egeben, bzw.	errechnet si	nd die Punk	tkoordinater	1.
		ts-Radius (Z hse sind die					errechnet si	nd die Punk	tkoordinater	1.
wieder. Nur	auf der y-Ac						errechnet si	nd die Punk	tkoordinater	1.
wieder. Nur dargestellt.	auf der y-Ac	hse sind die	sy-Werte in d		g richtig ang	jegeben.				
wieder. Nur	auf der y-Ac			der Skalierur			0,004 0,281	-0,010 0,271	-0,021 0,250	-0,031 0,218
wieder. Nur dargestellt. 0,028	0,028	0,027	0,024	der Skalierur 0,021	g richtig ang	0,011	0,004	-0,010	-0,021	-0,031
wieder. Nur dargestellt. 0,028 0,148	0,028 0,177	0,027 0,203	0,024 0,228	0,021 0,249	0,017 0,266	0,011 0,277	0,004 0,281	-0,010 0,271	-0,021 0,250	-0,031 0,218
0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136
wieder. Nur dargestellt. 0,028 0,148 0,352	0,028 0,177 0,310	0,027 0,203 0,265	0,024 0,228 0,218	0,021 0,249 0,168	0,017 0,266 0,118	0,011 0,277 0,067	0,004 0,281 0,016	-0,010 0,271 -0,034	-0,021 0,250 -0,085	-0,031 0,218 -0,136

E 0E7	4.026	4 745	4 506	4 107	2 000	2 222			
5,057	4,926	4,745	4,506	4,197	3,809	3,333			
E 0.E.7	4.026	4.745	4.506	4.407	2.000	2.222			
5,057	4,926	4,745	4,506	4,197	3,809	3,333			
-1,612	-2,118	-2,610	-3,085	-3,535	-3,955	-4,336			
4,90	4,72	4,48	4,20	3,87	3,49	3,08			
10,92	17,67	24,83	31,78	38,00	43,15	47,00			
0,238	0,254	0,274	0,299	0,329	0,363	0,400			
91,12	90,52	89,97	89,46	88,96	88,46	87,96			
162,97	159,27	154,95	149,96	144,31	137,97	130,93			
5,234	5,073	4,861	4,600	4,292	3,938	3,543			
-0,040	-0,047	-0,054	-0,059	-0,063	-0,065	-0,067			
0,179	0,132	0,078	0,019	-0,044	-0,109	-0,176			
-0,185	-0,234	-0,281	-0,326	-0,367	-0,405	-0,439			
4,278	4,044	3,763	3,437	3,070	2,664	2,226			
.,_,	./0	<i>5</i> // <i>65</i>	5/1.57	3/0.0	_/=-	_/0			

Copyright. Alle Rechte vorbehalten. 27.12.2012